5-colouring graphs with 4 crossings

نویسندگان

  • Rok Erman
  • Frédéric Havet
  • Bernard Lidický
  • Ondřej Pangrác
چکیده

We disprove a conjecture of Oporowski and Zhao stating that every graph with crossing number at most 5 and clique number at most 5 is 5-colourable. However, we show that every graph with crossing number at most 4 and clique number at most 5 is 5-colourable. We also show some colourability results on graphs that can be made planar by removing few edges. In particular, we show that if a graph with clique number at most 5 has three edges whose removal leaves the graph planar, then it is 5-colourable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filling the Complexity Gaps for Colouring Planar and Bounded Degree Graphs

We consider a natural restriction of the List Colouring problem: k-Regular List Colouring, which corresponds to the List Colouring problem where every list has size exactly k. We give a complete classification of the complexity of k-Regular List Colouring restricted to planar graphs, planar bipartite graphs, planar triangle-free graphs and to planar graphs with no 4-cycles and no 5-cycles. We a...

متن کامل

Strong edge-colouring of sparse planar graphs

A strong edge-colouring of a graph is a proper edge-colouring where each colour class induces a matching. It is known that every planar graph with maximum degree∆ has a strong edge-colouring with at most 4∆ + 4 colours. We show that 3∆ + 1 colours suffice if the graph has girth 6, and 4∆ colours suffice if ∆ ≥ 7 or the girth is at least 5. In the last part of the paper, we raise some questions ...

متن کامل

Adapted list colouring of planar graphs

Given a (possibly improper) edge-colouring F of a graph G, a vertex colouring of G is adapted to F if no colour appears at the same time on an edge and on its two endpoints. If for some integer k, a graph G is such that given any list assignment L to the vertices of G, with |L(v)| ≥ k for all v, and any edgecolouring F of G, G admits a colouring c adapted to F where c(v) ∈ L(v) for all v, then ...

متن کامل

5-choosability of graphs with 2 crossings

We show that every graph with two crossings is 5-choosable. We also prove that every graph which can be made planar by removing one edge is 5-choosable. Key-words: list colouring, choosability, crossing number † Universidade Federal do Ceará, Departamento de Computaçao, Bloco 910, Campus do Pici, Fortaleza, Ceará, CEP 60455-760, Brasil. [email protected]; Partially supported by CNPq/Brazil. ‡ P...

متن کامل

List-colourings of Near-outerplanar Graphs

A list-colouring of a graph is an assignment of a colour to each vertex v from its own list L(v) of colours. Instead of colouring vertices we may want to colour other elements of a graph such as edges, faces, or any combination of vertices, edges and faces. In this thesis we will study several of these different types of list-colouring, each for the class of a near-outerplanar graphs. Since a g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009